

The Development of a New Catalytic Process: Bu₃SnH-Catalyzed Reductive Cyclization of Enals and Enones

David S. Hays and Gregory C. Fu*

Department of Chemistry, Massachusetts Institute of Technology Cambridge, MA 02139

Received 13 February 1999; revised 10 April 1999; accepted 15 April 1999

Abstract: By sequencing two known reactions, a new catalytic carbon-carbon bond-forming process, the Bu₃SnH-catalyzed, PhSiH₃-mediated reductive cyclization of enals and enones, has been developed. The addition of EtOH to the reactions leads to reproducibly good yields of the cyclized products; a rationale for including this additive is provided. © 1999 Elsevier Science Ltd. All rights reserved.

Keywords: catalysis; cyclisation; silicon and compounds; tin and compounds

Over the past several decades, a tremendous amount of effort has been directed toward the development of organotin reagents for organic synthesis.¹ Much of this work has centered on radical-based chemistry of Bu₃SnH.² It is a testimony to the power of these methods that these efforts have proceeded in spite of the toxicity³ and the purification⁴ issues that surround triorganotin compounds.

Recently, a variety of strategies have been pursued to address these toxicity and purification issues, one of which involves the development of alternative reagents to Bu₃SnH, such as (Me₃Si)₃SiH (TTMS).^{5,6} A drawback of this approach is that it forsakes the sometimes unique reactivity of Bu₃SnH.⁷ We have chosen to pursue a different approach, one that focuses on the development of Bu₃SnH-*catalyzed* variants of reactions for which Bu₃SnH has been reported to serve as a useful stoichiometric reductant.⁸ Such a strategy capitalizes on the quite sizable base of knowledge regarding the chemistry of Bu₃SnH and simultaneously greatly reduces the amount of Bu₃SnH that is required to effect the desired transformation.

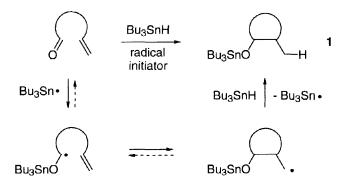
E-mail: gcf@mit.edu

During the last few years, we have described Bu₃SnH-catalyzed variants of a number of processes, including the Barton-McCombie deoxygenation of alcohols, the reduction of nitroalkanes to alkanes, the conversion of azides to amines, and the conjugate reduction of α , β -unsaturated carbonyl compounds. In these processes, the Bu₃SnH catalyst effects the reduction of the substrate, and a silicon hydride regenerates the Bu₃SnH from the initial reduction adduct, thereby completing the catalytic cycle. In this Article, we describe the application of this general approach to the development of a Bu₃SnH-catalyzed variant of the Beckwith-Enholm cyclization of enals and enones (eq 1). Part of this study has been the subject of a preliminary report. In this Article, we describe the study has been the subject of a preliminary report.

cat. Bu
$$_3$$
SnH, 0.5 PhSiH $_3$

EtOH

radical initiator


PhH or toluene, Δ

HO

H

Results and Discussion

In 1986 Beckwith reported that Bu₃SnH can effect the reductive cyclization of a δ,ε-unsaturated enal via a radical chain process (Figure 1);^{14,15} others, most notably Enholm, subsequently explored the scope of this reaction.^{16,17} The reductive cyclization proceeds by initial addition of a Bu₃Sn radical to a carbonyl group to produce a tin ketyl (Figure 1). Intramolecular addition of the ketyl to the olefin affords a new radical, which then abstracts a hydrogen atom from Bu₃SnH to generate the reductive cyclization product (1) and the chain-carrying Bu₃Sn radical.

Figure 1. Beckwith-Enholm reductive cyclization of enals and enones with stoichiometric Bu₃SnH

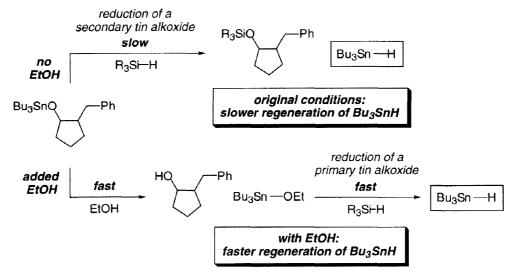
Given that the product of the Beckwith-Enholm reaction is a tin alkoxide (Bu₃SnOR, 1), it appeared reasonable to postulate that cyclization could be achieved with only a *catalytic* amount of Bu₃SnH, if a stoichiometric quantity of a metal hydride (M-H) capable of reducing Bu₃SnOR to Bu₃SnH were added (Figure 2, "turnover step").¹⁸ In addition to being chemically competent for achieving the turnover step, M-H must not react with a carbonyl group or an olefin and should be non-toxic.

Figure 2. Proposed pathway for a Bu₃SnH-catalyzed Beckwith-Enholm reductive cyclization

Silicon hydrides appeared to be excellent candidates for the role of stoichiometric reducing agent (M-H), since silicon hydrides can reduce Bu₃SnOR to Bu₃SnH (eq 2).¹⁹ Furthermore, silicon hydrides are relatively innocuous²⁰ and do not typically react with carbonyl groups or olefins in the absence of a catalyst.²¹

Thus, two known reactions, run in sequence, seemed to provide the basis for a new catalytic process (Figure 2). When this proposal was put to the test, however, we obtained an unanticipated result. In accord with the report of Enholm,¹⁷ reaction of enal **2** with stoichiometric Bu₃SnH resulted in very clean conversion to the cyclized product (eq 3; >185:1 cyclic:acyclic). However, when we subjected **2** to the catalytic conditions (0.10 equiv Bu₃SnH, 0.6-1.2 equiv PhSiH₃), we observed a significant quantity of the acyclic reduction product (eq 3; 1-13:1 cyclic:acyclic). This result is opposite from what we had anticipated--we had expected that the lower

concentration of Bu₃SnH under the catalytic conditions would lead to a cyclic:acyclic product ratio at least as large as that observed in the presence of stoichiometric Bu₃SnH.²² Even more surprisingly, when we investigated the Bu₃SnH-catalyzed reductive cyclization of **2** with polymethylhydrosiloxane (PMHS), a less reactive silicon hydride, as the stoichiometric reducing agent, the acyclic alcohol was the *predominant* product (eq 3; 0.1:1 cyclic:acyclic).


Ph AIBN
$$C_6H_6$$
, 80 °C $+$ HO Ph HO $+$ HO

In our efforts to improve the efficiency of the Bu₃SnH-catalyzed reductive cyclization process, we decided to focus on facilitating the turnover step (see Figure 2). Because PhSiH₃ is, to the best of our knowledge, the most effective silicon hydride for reducing Sn-O bonds to Sn-H bonds, screening commercially available silicon hydrides seemed unlikely to be productive.

Two observations described in the literature suggested an alternative means by which we might be able to accelerate the turnover step: (1) exchange of alcohols with tin alkoxides proceeds rapidly at room temperature,²³ and (2) primary tin alkoxides are more readily reduced by silicon hydrides than are secondary or tertiary tin alkoxides.¹⁹ Based on these observations, we postulated that the addition of a primary alcohol (e.g., EtOH) to the reaction mixture might accelerate the turnover step (Figure 3) to the point that the 1,2-reduction pathway might become insignificant.

We were pleased to discover that the addition of EtOH does indeed lead to elimination of the acyclic alcohol as a side product in the Bu₃SnH-catalyzed reductive cyclization of enal **2** (Table 1, entry 1). We have applied these reaction conditions (0.1-0.3 equiv Bu₃SnH,^{24,25} 0.5 equiv PhSiH₃, 2.0 equiv EtOH, radical initiator, refluxing benzene or toluene) to the cyclization of a range of enals and enones (Table 1).²⁶ Both five- (entries 1-4) and six-membered rings (entries 5-6) are

formed efficiently in this new catalytic carbon-carbon bond-forming process. The cyclization proceeds more smoothly when the olefin bears a radical-stabilizing substituent (e.g., phenyl or ester, entries 1 and 2); otherwise, a significant amount of uncyclized alcohol is produced (29%; entry 3).²⁷ We observe essentially the same diastereoselection for reactions run under the catalyzed conditions as for reactions run with stoichiometric Bu₃SnH, a result consistent with the catalytic reaction proceeding via the pathway depicted in Figure 2.

Figure 3. Proposed strategy to facilitate the turnover step (regeneration of Bu₃SnH): addition of a primary alcohol (EtOH)

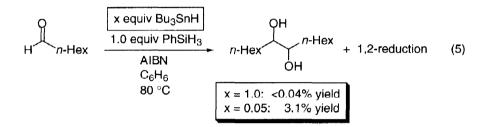
We have also demonstrated that a related reductive cyclization is susceptible to Bu₃SnH catalysis. Enholm reported in 1991 that certain activated dienes undergo intramolecular coupling upon treatment with three equivalents of Bu₃SnH.²⁸ We have established that this reaction can be effected in comparable yield and stereoselection using Bu₃SnH as a catalyst (0.10 equiv) and PhSiH₃ as the stoichiometric reductant (eq 4).

Me O Me O.1 equiv
$$0.5 \, \text{PhSiH}_3$$
 $2 \, \text{equiv EtOH}$ $0.5 \, \text{PhH}, \, \Delta$ $0.5 \, \text{PhSiH}_3$ $0.5 \, \text{Ph$

Table 1. Bu₃SnH-catalyzed reductive cyclization of enals and enones

Entr	y Substrate	Products ^a	Yield ^b
1	O Ph	HQPh HOPh	85
2	EtO ₂ C	HQCO ₂ Et	71
3	O	HQ	67 ^c
4	Me O CO ₂ Et	Me ————————————————————————————————————	75
5	EtO ₂ C	1.1:1	76
6	EtO ₂ C	Me	66

^aProduct ratios are based on analysis by capillary gas chromatography or by ¹H NMR. ^b Yields refer to isolated mixtures of the cis and trans products and are the average of two runs. ^c The acyclic 1,2-reduction product is produced in 29% yield.


The origin of 1,2-reduction in the absence of EtOH. As noted above, in the original, EtOH-free Bu₃SnH-catalyzed reductive cyclizations, we had observed simple 1,2-reduction of enal 2 to a surprising extent (eq 3). Our visual observation that metallic tin is formed in these catalyzed reactions (but not in the reactions that employ stoichiometric Bu₃SnH) led us to a possible explanation for these results: Bu₂SnH₂ is being generated under the catalytic conditions. This postulate was based on the knowledge that dialkyltin dihydrides are active catalysts for the polar reduction of aldehydes by silicon hydrides^{8a} and that dialkyltin dihydrides decompose readily to tin metal.²⁹

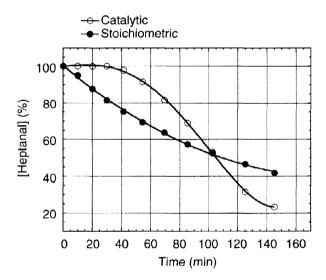

We hypothesized that Bu_2SnH_2 is being produced via an intermolecular Bu_3SnH -mediated pinacol coupling of the substrate (Figure 4).³⁰ Thus, a Bu_3Sn radical adds to the aldehyde to form a tin ketyl, which then adds in an intermolecular fashion to a second aldehyde. The resulting oxygen-centered radical ejects a butyl radical through a facile intramolecular S_H2 reaction at tin, thereby producing a dioxastannolane.³⁰ Reaction of the dioxastannolane with $PhSiH_3$ then affords Bu_2SnH_2 .

Figure 4. A possible mechanism for the formation of Bu₂SnH₂

This pathway appears to be consistent with our observation of increased 1,2-reduction under the Bu₃SnH-catalyzed reductive cyclization conditions (eq 3): when the concentration of Bu₃SnH decreases (Bu₃SnH catalysis), the partitioning of tin ketyl 3 (Figure 4) between formation of Bu₂SnH₂ and reductive cyclization shifts more toward formation of Bu₂SnH₂, since this process does not require Bu₃SnH; in contrast, the rate of reductive cyclization *is* Bu₃SnH dependent, since hydrogen atom abstraction from Bu₃SnH seems to be rate-determining.³¹ The more Bu₂SnH₂ that is generated, the more 1,2-reduction occurs.

To determine the feasibility of our hypotheses, we examined the reduction of *n*-heptanal with Bu₃SnH/PhSiH₃. Two side-by-side reactions, which differed only in the quantity of Bu₃SnH (1.0 vs. 0.05 equiv), were carried out (eq 5). In the reaction with the higher concentration of Bu₃SnH, we were unable to detect any of the pinacol coupling product. In the low-concentration reaction, on the other hand, we found that the pinacol adduct had formed in 3% yield. Furthermore, our kinetic data for the two reactions suggest that a new, highly active catalyst for carbonyl reduction is produced in the reaction with 0.05 equivalents of Bu₃SnH (Figure 5). Collectively, these observations are consistent with the hypotheses outlined above for explaining the increased 1,2-reduction at low Bu₃SnH concentrations (eq 3).

Figure 5. Evidence for the formation of a new catalytic species in the Bu₃SnH-catalyzed reduction of *n*-heptanal (eq 5)

Conclusions

We have developed a new catalytic carbon-carbon bond-forming process, the Bu₃SnH-catalyzed, PhSiH₃-mediated reductive cyclization of enals and enones.³² The development of this process into a general and reliable method required that regeneration of the Bu₃SnH catalyst be efficient, and this was accomplished by adding EtOH to the reaction mixture. Otherwise, if the steady-state concentration of Bu₃SnH is very low, an undesired pinacol coupling of the substrate occurs, leading to the production of Bu₂SnH₂, which serves as a catalyst for simple 1,2-reduction of the substrate.

Experimental

General. (Bu₃Sn)₂O (Gelest) and PhSiH₃ (Aldrich) were distilled prior to use. Absolute EtOH was obtained from Pharmco and distilled from magnesium turnings prior to use. AIBN (Eastman), 1,1'-azobis(cyclohexanecarbonitrile) (Aldrich), and tetrabutylammonium fluoride (TBAF; 1.0 M in THF) (Aldrich) were used without purification.

Solvents were distilled from the indicated drying agents: benzene (sodium/benzophenone); toluene (molten sodium).

Analytical thin layer chromatography was performed using EM Reagents 0.25 mm silica gel 60 plates, and visualization was accomplished with anisaldehyde/ $H_2SO_4/EtOH/HOAc$ or with ethanolic phosphomolybdic acid. Flash chromatography was performed on EM Reagents silica gel 60 (230-400 mesh).

 1 H, and 13 C nuclear magnetic resonance spectra were recorded on Varian XL-300 or Unity-300 NMR spectrometers at ambient temperature. 1 H data are reported as follows: chemical shift in parts per million downfield from tetramethylsilane (δ scale), multiplicity (br = broad, s = singlet, d = doublet, t = triplet, q = quartet, and m = multiplet), integration, and coupling constant (Hz). 13 C chemical shifts are reported in ppm downfield from tetramethylsilane (δ scale). All 13 C spectra were determined with complete proton decoupling.

Gas chromatography was performed on a Hewlett Packard 5890 Series II instrument utilizing a DB-1 capillary column (J & W Scientific).

Infrared spectra were obtained on a Perkin-Elmer Series 1600 FT-IR spectrophotometer. Microanalyses were performed by E + R Microanalytical

Laboratory, Inc. High resolution mass spectra were recorded on a Finnegan MAT System 8200 spectrometer.

All reactions were carried out under an atmosphere of nitrogen or argon. Reductive cyclization reactions were carried out in sealed 10 mL Schlenk tubes under an atmosphere of nitrogen, and reaction temperatures refer to those of the oil bath.

The yields reported below may differ slightly from those reported in Table 1, since the yield data in Table 1 are the average of two runs.

Table 1, entry 1. $(Bu_3Sn)_2O$ (25 μL, 0.050 mmol), PhSiH₃ (62 μL, 0.50 mmol), EtOH (117 μL, 2.00 mmol), and AIBN (16 mg, 0.10 mmol in 200 μL of benzene) were added to a solution of the enal (174 mg, 1.00 mmol) in benzene (2.0 mL) in a 10 mL sealable Schlenk tube. The vessel was sealed, shaken, and placed in an oil bath at 80 °C. After 5 hours, more AIBN was added (16 mg, 0.10 mmol in 200 μL of benzene). After 7 more hours, TLC indicated that all of the starting material had been consumed. The reaction mixture was treated with TBAF (3.0 mL, 3.0 mmol), stirred for 1 h, and then subjected to an aqueous workup (15 mL of 2 N HCl). The reaction mixture was extracted with Et₂O, and the combined organic layers were dried (MgSO₄), filtered, concentrated, and purified by flash chromatography, which provided 149 mg (85%) of a mixture of cis and trans cyclopentanols as an analytically pure, colorless oil.

GC analysis of an aliquot taken from the unpurified reaction mixture, as well as ¹H NMR integration of the purified material, indicated that a 1.3 : 1 (trans : cis) mixture of cyclopentanols was present.

cis- and *trans*-2-(Phenylmethyl)cyclopentanol. The 1 H and 13 C NMR spectra of the mixture were identical to those reported in the literature. IR (neat) 3374, 3061, 3026, 2956, 2872, 1494, 1453, 1071, 1030, 747, 700. Anal. calcd. for $C_{12}H_{16}O$: C, 81.77; H, 9.15. Found: C, 81.55; H, 9.21.

Table 1, entry 2. $(Bu_3Sn)_2O$ (25 μ L, 0.050 mmol), PhSiH₃ (62 μ L, 0.50 mmol), EtOH (117 μ L, 2.00 mmol), and AIBN (16 mg, 0.10 mmol in 200 μ L of benzene) were added to a solution of the enal (170 mg, 1.00 mmol) in benzene (2.0 mL) in a 10 mL sealable Schlenk tube. The vessel was sealed, shaken, and placed in an oil bath at 80 °C. After 6 h, TLC and GC analyses indicated that all of the starting material had been consumed. The reaction mixture was treated with TBAF (3.0 mL, 3.0 mmol), stirred for 2 h, and then subjected to an aqueous workup (15 mL of 2 N HCl). The

reaction mixture was extracted with Et₂O, and the combined organic layers were dried (MgSO₄), filtered, concentrated, and purified by flash chromatography, which provided 108 mg (70%; colorless oil) of a mixture of trans hydroxyester and cis lactone.

GC analysis of an aliquot taken from the unpurified reaction mixture, as well as ¹H NMR integration of the purified material, indicated that a 1.5 : 1 (trans : cis) mixture of compounds was present.

The purified mixture was silylated, and the two components were then separated by flash chromatography. The silyl ether was then desilylated.

(*trans*-2-Hydroxycyclopentane)acetic acid ethyl ester. Colorless oil. The 1 H NMR spectrum was identical to the partial data reported in the literature. 34 1 H NMR (300 MHz, CDCl₃) δ 4.12 (q, 2H, J = 7.2), 3.83 (q, 1H, J = 6.4), 2.86 (br s, 1H), 2.43 (dd, 1H, J₁ = 16.2, J₂ = 6.6), 2.35 (dd, 1H, J₁ = 16.2, J₂ = 8.1), 2.13-2.00 (m, 1H), 1.99-1.86 (m, 2H), 1.79-1.51 (m, 3H), 1.24 (t, 3H, J = 7.2), 1.26-1.13 (m, 1H). 13 C NMR (75 MHz, CDCl₃) δ 174.1, 78.8, 60.6, 44.4, 38.5, 34.2, 30.6, 21.8, 14.1.

cis-Hexahydro-2*H*-cyclopenta[b]furan-2-one. Colorless oil. The ¹H NMR spectrum was identical to that reported in the literature.³⁵ ¹³C NMR (75 MHz, CDCl₃) δ 177.7, 86.3, 37.8, 35.9, 33.5, 33.4, 23.3.

Table 1, entry 3. (Bu₃Sn)₂O (76 μL, 0.15 mmol), PhSiH₃ (62 μL, 0.50 mmol), EtOH (117 μL, 2.00 mmol), and AIBN (16 mg, 0.10 mmol in 200 μL of benzene) were added to a solution of the enal (168 mg, 1.00 mmol) in benzene (2.0 mL) in a 10 mL sealable Schlenk tube. The vessel was sealed, shaken, and placed in an oil bath at 80 °C. After 12.5 h, TLC analysis indicated that all of the starting material had been consumed. The reaction mixture was treated with TBAF (3.0 mL, 3.0 mmol), stirred for 1 h, and then subjected to an aqueous workup (15 mL of 2 N HCl). The reaction mixture was extracted with Et₂O, and the combined organic layers were dried (MgSO₄), filtered, concentrated, and purified by flash chromatography, which provided 167 mg (98%) of a mixture of cis and trans cyclopentanols and the simple reduction product as an analytically pure, colorless oil. Anal. calcd. for C₁₁H₂₂O: C, 77.58; H, 13.02. Found: C, 77.95; H, 12.86. The mixture was separated by flash chromatography to afford the three isomers as colorless oils.

¹H NMR integration of the purified material indicated that a 2.3 : 1 (trans : cis) mixture of cyclopentanols was present. The stereochemistry was determined by oxidation of the cyclopentanol to the cyclopentanone according to a literature procedure,³⁶ followed by reduction with Li(*sec*-Bu₃BH). The latter reaction is

known to yield the cis isomer in the reduction of 2-alkylcyclopentanones.³⁷ ¹H NMR integration indicated that 30% of the purified material was 5-undecen-1-ol (3.6 : 1 E : Z, as estimated by the relative intensities of the vinyl signals in the ¹³C NMR).

trans-2-Hexylcyclopentanol. 1 H NMR (300 MHz, CDCl₃) δ 3.80 (q, 1H, J = 5.7), 1.96-0.99 (m, 18H), 0.88 (t, 3H, J = 6.8). 13 C NMR (75 MHz, CDCl₃) δ 79.4, 48.4, 34.6, 33.9, 31.8, 30.0, 29.6, 28.2, 22.6, 21.8, 14.1. IR (neat) 3333, 2922, 2854, 1464, 1456, 1378, 1344, 1078, 1022, 972, 724. HRMS: Calcd. for C₁₁H₂₂O: 170.1671. Found: 170.1669.

cis-2-Hexylcyclopentanol. 1 H NMR (300 MHz, CDCl₃) δ 4.14 (td, 1H, J₁ = 4.0, J₂ = 1.2), 1.87-1.25 (m, 18H), 0.88 (t, 3H, J = 6.8). 13 C NMR (75 MHz, CDCl₃) δ 74.9, 45.8, 34.8, 31.9, 29.7, 29.2, 28.8, 28.6, 22.7, 21.8, 14.1. IR (neat) 3374, 2956, 2925, 2856, 1466, 1378, 1302, 1136, 1028, 988, 891, 724. HRMS: Calcd. for C₁₁H₂₂O: 170.1671. Found: 170.1669.

E- and *Z*-5-Undecen-1-ol. ¹H NMR (300 MHz, CDCl₃) δ 5.46-5.29 (m, 2H), 3.66-3.61 (m, 2H), 2.09-1.93 (m, 4H), 1.63-1.20 (m, 11H), 0.90-0.85 (m, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 130.9, 130.4, 129.7, 129.3, 62.9, 32.5, 32.4, 32.3, 32.2, 31.5, 31.4, 29.4, 29.3, 27.2, 26.9, 25.8, 25.7, 22.5, 22.5, 14.0. IR (neat) 3331, 3004, 2926, 2856, 1458, 1378, 1061, 968, 726. HRMS: Calcd. for C₁₁H₂₂O: 170.1671. Found: 170.1669.

Table 1, entry 4. (Bu₃Sn)₂O (25 μL, 0.050 mmol), PhSiH₃ (62 μL, 0.50 mmol), EtOH (117 μL, 2.00 mmol), and 1,1′-azobis(cyclohexanecarbonitrile) (24 mg, 0.10 mmol in 200 μL of toluene) were added to a solution of the enone (184 mg, 1.00 mmol) in toluene (1.0 mL) in a 10 mL sealable Schlenk tube. The vessel was sealed, shaken, and placed in an oil bath at 110 °C. After 3.5 hours, more initiator was added (24 mg, 0.10 mmol in 200 μL of toluene). After 3.5 more hours, GC analysis indicated that only a small amount of starting material remained. The reaction mixture was treated with TBAF (3.0 mL, 3.0 mmol), stirred for 1 h, and then subjected to an aqueous workup (15 mL of 2 N HCl). The reaction mixture was extracted with Et₂O, and the combined organic layers were dried (MgSO₄), filtered, concentrated, and purified by flash chromatography, which provided 130 mg (80%) of a mixture of trans hydroxyester and cis lactone as a colorless oil. The mixture was separated by flash chromatography to afford the two compounds as colorless oils.

A GC analysis of an aliquot taken from the unpurified reaction mixture (corrected for the relative response factors), as well as ¹H NMR integration of the purified material, indicated that a 1.0 : 1 (trans : cis) mixture of compounds was present.

(trans-2-Hydroxy-2-methylcyclopentane)acetic acid ethyl ester. ¹H NMR (300

MHz, CDCl₃) δ 4.12 (q, 2H, J = 7.1), 2.54 (br s, 1H), 2.47-2.15 (m, 3H), 2.00-1.89 (m, 1H), 1.81-1.47 (m, 4H), 1.29-1.15 (m, 1H), 1.24 (t, 3H, J = 7.1), 1.13 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 174.2, 79.3, 60.6, 46.4, 41.1, 35.3, 30.3, 23.1, 20.5, 14.1. IR (neat) 3433, 2965, 2874, 1735, 1374, 1329, 1306, 1201, 1153, 1097, 1033. HRMS: Calcd. for C₁₀H₁₈O₃: 186.1256. Found: 186.1258.

cis-Hexahydro-6a-methyl-2H-cyclopenta[b]furan-2-one. The 1H and ^{13}C NMR spectra were identical to those reported in the literature. 38

Table 1, entry 5. (Bu₃Sn)₂O (76 μL, 0.15 mmol), PhSiH₃ (62 μL, 0.50 mmol), EtOH (117 μL, 2.00 mmol), and AIBN (16 mg, 0.10 mmol in 200 μL of benzene) were added to a solution of the enal (184 mg, 1.00 mmol) in benzene (2.0 mL) in a 10 mL sealable Schlenk tube. The vessel was sealed, shaken, and placed in an oil bath at 80 °C. After 6.5 h, TLC analysis indicated that all of the starting material had been consumed. The reaction mixture was treated with TBAF (3.0 mL, 3.0 mmol), stirred for 1 h, and then subjected to an aqueous workup (15 mL of 2 N HCl). The reaction mixture was extracted with Et₂O, and the combined organic layers were dried (MgSO₄), filtered, concentrated, and dissolved in CH₂Cl₂ (10 mL). A catalytic quantity of *p*-toluenesulfonic acid monohydrate was added, and the solution was stirred for 20 h, at which time GC analysis indicated that all of the initially formed trans hydroxyester had been converted to the corresponding lactone. The solution was concentrated and purified by flash chromatography, which afforded 103 mg (74%) of an analytically pure mixture of cis and trans lactones.

¹H NMR integration of the purified material indicated that a 1.1 : 1 (trans : cis) mixture of lactones was present. The stereochemistry was assigned by noting which carbinol signal grew in over the course of the acid-catalyzed lactonization. This resonance was assigned to the trans isomer.

cis- and *trans*-Hexahydro-2(3*H*)-benzofuranone. Colorless oil. ^{1}H NMR (300 MHz, CDCl₃) δ 4.48 (q, cis carbinol resonance, J = 4.2), 3.75 (td, trans carbinol resonance, J₁ = 10.9, J₂ = 3.7), 2.62-1.16 (m, 11H). ^{13}C NMR (75 MHz, CDCl₃) δ 177.3, 176.4, 85.0, 79.0, 44.6, 37.3, 35.7, 34.7, 30.0, 28.1, 27.6, 27.0, 25.2, 23.9, 22.6, 19.7. IR (neat) 2936, 2861, 1770, 1448, 1225, 1212, 1173, 1142, 1076, 1029, 989, 942, 931. Anal. calcd. for $C_8H_{12}O_2$: C, 68.55, H; 8.63. Found: C, 68.65; H, 8.62.

Table 1, entry 6. (Bu₃Sn)₂O (51 μ L, 0.10 mmol), PhSiH₃ (62 μ L, 0.50 mmol), EtOH (117 μ L, 2.00 mmol), and 1,1'-azobis(cyclohexanecarbonitrile) (24 mg, 0.10 mmol in 200 μ L of toluene) were added to a solution of the enone (198 mg, 1.00 mmol) in

toluene (1.0 mL) in a 10 mL sealable Schlenk tube. The vessel was sealed, shaken, and placed in an oil bath at 110 °C. More initiator was added after 5.5 h (24 mg, 0.10 mmol in 200 μ L of toluene) and after 9.5 h (12 mg, 0.050 mmol in 200 μ L of toluene). After a total reaction time of 12 hours, TLC analysis indicated that very little starting material remained. The reaction mixture was treated with TBAF (3.0 mL, 3.0 mmol), stirred for 1 h, and then subjected to an aqueous workup (15 mL of 2 N HCl). The reaction mixture was extracted with Et₂O, and the combined organic layers were dried (MgSO₄), filtered, concentrated, and dissolved in CH₂Cl₂ (10 mL). A catalytic quantity of *p*-toluenesulfonic acid monohydrate was added, and the reaction was stirred until equilibrium was reached. The solution was concentrated and redissolved in CH₂Cl₂ in order to drive the lactonization to completion (two times). The reaction mixture was then purified by flash chromatography to afford 102 mg (66%) of an analytically pure mixture of cis and trans lactones as a colorless oil. Anal. calcd. for C₉H₁₄O₂: C, 70.10; H, 9.15. Found: C, 70.13; H, 9.46.

GC analysis of an aliquot taken from the unpurified reaction mixture indicated that a 1.1 : 1 (trans : cis) mixture of lactones was present.

trans-Hexahydro-7a-methyl-2(3*H*)-benzofuranone. 13 C NMR (75 MHz, CDCl₃) δ 176.2, 85.9, 46.7, 36.8, 33.2, 25.4, 24.7, 22.9, 17.4.

cis-Hexahydro-7a-methyl-2(3*H*)-benzofuranone. The signals assigned to the cis isomer in the ¹H and ¹³C NMR spectra of the mixture were identical to those reported in the literature.³⁸

Eq 4. (Bu₃Sn)₂O (25 μL, 0.050 mmol), PhSiH₃ (62 μL, 0.50 mmol), EtOH (117 μL, 2.00 mmol), and AIBN (16 mg, 0.10 mmol in 200 μL of benzene) were added to a solution of the enone (180 mg, 1.00 mmol) in benzene (2.0 mL) in a 10 mL sealable Schlenk tube. The vessel was sealed, shaken, and placed in an oil bath at 80 °C. After 7.5 h, TLC analysis indicated that all of the starting material had been consumed. The solution was concentrated and purified by flash chromatography to afford 164 mg (90%) of a mixture of the two products as an analytically pure, colorless oil. The 1 H and 1 C NMR spectra were identical to those reported in the literature. Anal. calcd. for C₁₁H₁₈O₂: C, 72.49; H, 9.95. Found: C, 72.18; H, 9.99.

GC analysis of an aliquot taken from the unpurified reaction mixture, and then passed through a plug of silica gel, indicated that a 3.6 : 1 (trans : cis) mixture of isomers was present.

Control reactions. Each of the seven substrates was submitted to the conditions described in the corresponding cyclization procedure, but in the absence of (Bu₃Sn)₂O. In every case, little or no cyclized product (<3%) was observed by GC analysis.

Acknowledgment. Support has been provided by the Alfred P. Sloan Foundation, the American Cancer Society, Bristol-Myers Squibb, Merck, the National Science Foundation (predoctoral fellowship to D.S.H.; Young Investigator Award to G.C.F.), Pfizer, Pharmacia & Upjohn, and Procter & Gamble. Acknowledgment is made to the donors of the Petroleum Research Fund, administered by the ACS, for partial support of this research.

References

- (1) (a) Pereyre, M.; Quintard, J.-P.; Rahm, A. *Tin in Organic Synthesis*; Butterworths: Boston, 1987. (b) Davies, A. G. *Organotin Chemistry*; VCH: New York, 1997.
- (2) For reviews of the chemistry of Bu₃SnH, see: (a) Neumann, W. P. *Synthesis* **1987**, 665-683. (b) RajanBabu, T. V. In *Encyclopedia of Reagents for Organic Synthesis*; Paquette, L. A., Ed.; Wiley: New York, 1995.
- (3) (a) De Mora, S. J. *Tributyltin: Case Study of an Environmental Contaminant;* Cambridge University Press: Cambridge, UK, 1996. (b) Boyer, I. J. *Toxicology* **1989**, 55, 253-298.
- (4) (a) For a succinct discussion, see: Crich, D.; Sun, S. J. Org. Chem. 1996, 61, 7200-7201. (b) For polymer-supported R₃SnH, see: Schumann, H.; Pachaly, B. Angew. Chem., Int. Ed. Engl. 1981, 20, 1043-1044. (c) For water-soluble R₃SnH, see: Light, J.; Breslow, R. Tetrahedron Lett. 1990, 21, 2957-2958. Rai, R.; Collum, D. B. Tetrahedron Lett. 1994, 35, 6221-6224. (d) For fluorinated R₃SnH, see: Curran, D. P.; Hadida, S. J. Am. Chem. Soc. 1996, 118, 2531-2532.
- (5) For reviews of the chemistry of (Me₃Si)₃SiH, see: (a) Chatgilialoglu, C. Acc. Chem. Res. **1992**, 25, 188-194. (b) Giese, B.; Dickhaut, J. In Encyclopedia of Reagents for Organic Synthesis; Paquette, L. A., Ed.; Wiley: New York, 1995.
- (6) For the use of dialkyl phosphites and hypophosphorous acid, see: Barton, D. H. R.; Jang, D. O.; Jaszberenyi, J. C. *J. Org. Chem.* **1993**, *58*, 6838-6842.

- (7) (a) For an example of divergent reactivity for (Me₃Si)₃SiH and Bu₃SnH, see: Ballestri, M.; Chatgilialoglu, C. *J. Org. Chem.* **1992**, *57*, 948-952. (b) For an example of divergent stereoselectivity for (Me₃Si)₃SiH and Bu₃SnH, see: Apeloig, Y.; Nakash, M. *J. Am. Chem. Soc.* **1994**, *116*, 10781-10782.
- (8) For the work of others, see: (a) Nitzsche, S.; Wick, M. Angew. Chem. 1957, 69, 96. Lipowitz, J.; Bowman, S. A. Aldrichimica Acta 1973, 6, 1-6. (b) Corey, E. J.; Suggs, J. W. J. Org. Chem. 1975, 40, 2554-2555. Stork, G.; Sher, P. M. J. Am. Chem. Soc. 1986, 108, 303-304. (c) Maleczka, R. E., Jr.; Terstiege, I. J. Org. Chem. 1998, 63, 9622-9623.
- (9) Lopez, R. M.; Hays, D. S.; Fu, G. C. J. Am. Chem. Soc. 1997, 119, 6949-6950.
- (10) Tormo, J.; Hays, D. S.; Fu, G. C. J. Org. Chem. 1998, 63, 5296-5297.
- (11) Hays, D. S.; Fu, G. C. J. Org. Chem. 1998, 63, 2796-2797.
- (12) Hays, D. S.; Scholl, M.; Fu, G. C. J. Org. Chem. 1996, 61, 6751-6752.
- (13) Hays, D. S.; Fu, G. C. J. Org. Chem. 1996, 61, 4-5.
- (14) Beckwith, A. L. J.; Roberts, D. H. J. Am. Chem. Soc. 1986, 108, 5893-5901.
- (15) For an overview of reductive cyclizations, see: Jasperse, C. P.; Curran, D. P.; Fevig, T. L. Chem. Rev. 1991, 91, 1237-1286.
- (16) (a) Ardisson, J.; Ferezou, J. P.; Julia, M.; Pancrazi, A. *Tetrahedron Lett.* **1987**, *28*, 2001-2004. (b) Sugawara, T.; Otter, B. A.; Ueda, T. *Tetrahedron Lett.* **1988**, *29*, 75-78.
- (17) (a) Enholm, E. J.; Prasad, G. Tetrahedron Lett. 1989, 30, 4939-4942. (b) Enholm, E. J.; Burroff, J. A. Tetrahedron Lett. 1992, 33, 1835-1838. (c) Enholm, E. J.; Burroff, J. A. Tetrahedron 1997, 53, 13583-13602.
- (18) For titanium-catalyzed reductive cyclization of δ,ε-unsaturated enals and enones to cyclopentanols: (a) Kablaoui, N.; Buchwald, S. L. *J. Am. Chem. Soc.* **1995**, *117*, 6785-6786. (b) Crowe, W. E.; Rachita, M. J. *J. Am. Chem. Soc.* **1995**, *117*, 6787-6788.
- (19) (a) Itoi, K. Fr. Patent 1,368,522, 1964. Itoi, K.; Kumano, S. Kogyo Kagaku Zasshi 1967, 70, 82-86. (b) Hayashi, K.; Iyoda, J.; Shiihara, I. J. Organomet. Chem. 1967, 10, 81-94. (c) Bellegarde, B.; Pereyre, M.; Valade, J. Bull. Soc. Chim. Fr. 1967, 3082-3083.
- (20) For example, the LD₅₀ of polymethylhydrosiloxane (PMHS) is 80 g/kg. Klyaschitskaya, A. L.; Krasovskii, G. N.; Fridlyand, S. A. Gig. Sanit. **1970**, 35, 28-31; Chem. Abs. **1970**, 72, 124864r.
- (21) Larock, Richard C. Comprehensive Organic Transformations; VCH: New York,

- 1989; pp 528-534.
- (22) In the absence of Bu₃SnH, enal 2 is not reduced by PhSiH₃.
- (23) Reference 1a, Chapters 2 and 11.
- (24) (Bu₃Sn)₂O functions as an inexpensive and convenient source of Bu₃SnH (treatment of (Bu₃Sn)₂O with PhSiH₃/EtOH in benzene at room temperature cleanly generates two equivalents of Bu₃SnH). Reductive cyclizations wherein catalytic amounts of Bu₃SnH are used in place of (Bu₃Sn)₂O afford yields and stereoselectivities essentially identical to those reported in Table 1. Compared with Bu₃SnH, (Bu₃Sn)₂O has advantages from the standpoints of cost and stability. Others have since applied this method: Itoh, T.; Sakabe, K.; Kudo, K.; Ohara, H.; Takagi, Y.; Kihara, H.; Zagatti, P.; Renou, M. J. Org. Chem. 1999, 64, 252-265.
- (25) At lower catalyst loadings, increased 1,2-reduction is observed.
- (26) For all of the substrates illustrated in Table 1, very little (<3%) reductive cyclization is observed in the absence of (Bu₃Sn)₂O under otherwise identical conditions.
- (27) Similar results have been reported by Enholm (Reference 17a).
- (28) (a) Enholm, E. J.; Kinter, K. S. J. Am. Chem. Soc. **1991**, 113, 7784-7785. (b) Enholm, E. J.; Kinter, K. S. J. Org. Chem. **1995**, 60, 4850-4855.
- (29) Kuivila, H. G. Adv. Organomet. Chem. 1964, 1, 47-87.
- (30) For Bu₃SnH-mediated intramolecular pinacol coupling reactions, see: (a) Hays, D. S.; Fu, G. C. J. Org. Chem. 1998, 63, 6375-6381. (b) Hays, D. S.; Fu, G. C. J. Am. Chem. Soc. 1995, 117, 7283-7284.
- (31) (a) When reductive cyclization of the *cis*-enal illustrated in Table 1, entry 3 is stopped at partial conversion, the recovered enal is a mixture of cis and trans olefin isomers. (b) For a related system in which stereochemical results consistent with reversible cyclization have been observed, see: Curran, D. P.; Porter, N. A.; Giese, B. *Stereochemistry of Radical Reactions*; VCH: New York, 1996; Chapter 2.2.3.2.
- (32) Since our initial report, this strategy has been applied by others: Enholm, E. J.; Moran, K. M.; Whitley, P. E.; Battiste, M. A. J. Am. Chem. Soc. 1998, 120, 3807-3808.
- (33) Janes, N. F.; Khambay, B. P. S. Magn. Reson. Chem. 1989, 27, 197-203.
- (34) Freimanis, Y. F.; Dikovskaya, K. I.; Ignatovich, L. G.; Kudryashova, V. V.; Korits, V. R.; Bokaldere, R. P.; Turovskii, I. V.; Sakhartova, O. V.; Sokolov, G.

- P.; Lolya, D. O. Zh. Org. Khim. 1984, 20, 1409-1417.
- (35) Little, R. D.; Fox, D. P.; Van Hijfte, L.; Dannecker, R.; Sowell, G.; Wolin, R. L.; Moens, L.; Baizer, M. M. J. Org. Chem. 1988, 53, 2287-2294.
- (36) Griffith, W. P.; Ley, S. V. Aldrichimica Acta 1990, 23, 13-19.
- (37) Brown, H. C.; Krishnamurthy, S. J. Am. Chem. Soc. 1972, 94, 7159-7161.
- (38) Bunce, R. A.; Drumright, R. E.; Taylor, V. L. Synth. Commun. 1989, 19, 2423-2430.
- (39) Enholm, E. J.; Kinter, K. S. J. Org. Chem. 1995, 60, 4850-4855.